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The interaction of a planar shock wave with a square cavity is studied experimentally 
and numerically. It is shown that such a complex, time-dependent, process can be 
modelled in a relatively simple manner. The proposed physical model is the Euler 
equations which are solved numerically, using the second-order-accurate high- 
resolution GRP scheme, resulting in very good agreement with experimentally 
obtained findings. Specifically, the wave pattern is numerically simulated throughout 
the entire interaction process. Excellent agreement is found between the experimentally 
obtained shadowgraphs and numerical simulations of the various flow discontinuities 
inside and around the cavity at all times. As could be expected, it is confirmed that the 
highest pressure acts on the cavity wall which experiences a head-on collision with the 
incident shock wave while the lowest pressures are encountered on the wall along which 
the incident shock wave diffracts. The proposed physical model and the numerical 
simulation used in the present work can be employed in solving shock wave 
interactions with other complex boundaries. 

1. Introduction 
The interaction of shock waves with rigid boundaries has been the subject of many 

investigations during the past four decades. They were motivated by the fact that shock 
wave diffractions arise in a variety of important applications. A commonplace 
technological application is an internal combustion engine, where inflow/outflow 
valves are periodically opened and shut giving rise to complex shock and rarefaction 
wave patterns. Another type of important application is in the area of public safety: 
the vulnerability of buildings to air blasts generated by either a bomb explosion or an 
industrial accident. As is well known, a blast effect is transmitted to fairly large 
distances via wave propagation, so that structure loading histories are governed by 
complex shock wave diffraction/reflection phenomena. Owing to the complexity of 
such interactions, investigations performed in the 1950s and the 1960s were limited to 
experimental studies conducted in supersonic wind tunnels and/or shock tubes. With 
the advent of fast computers and the development of accurate and efficient numerical 
schemes, attempts were made to numerically solve the flow fields arising in such 
interactions. Naturally, past investigations centred on relatively simple configurations. 
For example, shock wave reflection from wedges of various geometries received much 
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FIGURE 1. Schematic description of the flow field considered prior to the arrival of the incident shock 
wave at the cavity. All dimensions are in mm. Solid squares show pressure transducers, labelled 
nos 1-3. The computation domain is a rectangle 210 x 110 mm, starting 50 mm to the left of the 
cavity. 

attention and by now are well known and documented, e.g. see Ben-Dor (1991). 
Notably wedge interactions result in a pseudo-steady (self-similar) flow having a 
similar wave pattern throughout the interaction processes. 

The purpose of the present study is to analyse a complex shock wave interaction with 
rigid boundaries, an interaction which is truly non-stationary and possesses no 
similarity throughout its duration. An example of such a flow is the case of a planar 
shock wave propagation over a flat surface in which a square cavity is embedded; see 
figure 1. The interaction of the planar shock wave with such a cavity is studied both 
experimentally and numerically. As will be shown, such interaction is truly non- 
stationary and no similarity pattern can be identified in this flow field. It is noted that 
a few attempts were made in the recent past to study such flows, for example Gvozdeva 
et al. (1988) and Bazhenova et al. (1990). In these investigations the flow field was 
studied experimentally, using toepler and interferometric flow visualization techniques. 
In addition, an attempt was made to predict the post-shock flow pressure using the 
two-dimensional Whitham approximation. As will be shown subsequently the 
experimental as well as the theoretical studies of these papers failed to cover 
experimentally, and to reproduce theoretically, the investigated flow field. The 
proposed numerical scheme GRP (Generalized Riemann Problem) replicates the 
experimentally observed wave patterns (shock and contact discontinuities) quite 
accurately. Measured maxima of pressure time-histories on cavity walls were also 
reproduced by the computations. The present investigation thus offers a complete 
experimental coverage of the considered interaction process and a comprehensive 
numerical simulation which is shown to be in good agreement with the experimental 
findings. 

The plan of this paper is to introduce the theoretical modelling (Euler equations) in 
$2, followed by an outline of the numerical scheme GRP in 93. The results of 
experiments and computations are presented and compared in 54. The study is 
summarized in $5. 
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2. Theoretical background 
The flow field which results from the interaction of a normal shock wave with a 

square cavity, as shown in figure 1, is a two-dimensional, non-stationary flow. 
Assuming that the fluid is inviscid and non-conductive, the governing equations 
(expressing conservation of mass, momentum and energy) can be written as follows : 

conservation of mass 
aP a a ’  
-+-(pu)+-(pv) = 0 ;  
at ax aY 

conservation of x-momentum, 

a a a 
- (pu) + - (pu2 +p) +- (puv) = 0 ; 
at ax aY 

conservation of y-momentum, 

-(pv)+-(pu”)+-(Pv2+P) a a a = 0 ;  

at ax a Y  

conservation of energy, 

(3) 

where p, u, v, p and E are the density, the x-component and the y-component of the 
flow velocity vector, pressure and specific total energy, respectively; x, y and t ,  the 
independent variables, are Cartesian coordinates and time, respectively. The system of 
equations (lk(4) contains five dependent variables (p,  u, v, p and E ) .  For its solution 
an additional equation, the equation of state, is needed. For a perfect gas the equation 
of state is 

I P = (7- l)pe, 

e=E-(u2+v2)/2,  
(5) 

where e stands for the flow internal energy per unit mass and y is the ratio of specific 
heats. 

The assumption that the fluid is an inviscid and non-conductive perfect gas is quite 
reasonable for the flow considered for the following reasons. As long as the incident 
shock wave Mach number is moderate, i.e. M, < 4, the post-shock gas temperature is 
not too high (less than 1200 K for a diatomic gas and for T, = 300 K). Therefore, real 
gas effects can be ignored and the gas behaves virtually as a perfect gas. In subsequent 
solutions of (Ik(5) the highest incident shock wave Mach number is M, = 2.032; for 
such a case the ideal gas assumption is amply justified. The assumption of an inviscid 
and non-conductive gas is also reasonable since for the relatively short flow duration 
the amount of heat transfer and viscous effects, in and around the square cavity, are 
negligibly small in comparison with the flow specific energy and momentum, and can 
therefore be ignored. The validity of these assumptions is supported by the good 
agreement between the numerical results obtained by solving numerically (1)-(5) and 
the experimental findings, as will be presented below. 
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Equations (1)-(4) are nonlinear partial differential equations. An analytical solution 
to these equations is not available. Therefore, one is compelled to resort to numerical 
methods. The numerical scheme used for the solution of (1)-(5) is the GRP 
(Generalized Riemann Problem). This scheme is of a second-order accuracy and is 
especially suitable for producing solutions to compressible flows with shock or contact 
discontinuities. Details regarding the formulation of the GRP scheme are available in 
Ben-Artzi & Falcovitz (1984, 1986) and in Falcovitz & Ben-Artzi (1995). This scheme 
is formulated for flows in one space dimension. In the following, we present a brief 
description of the GRP scheme and its extension to two space dimensions via operator 
splitting. 

3. Numerical scheme 

energy are now concisely written as 
The Euler equations (1)-(4) expressing the conservation of mass, momentum and 

a a a 
at  ax aY 
-U+-F(U)+-G(U) = 0, 

The two-dimensional finite-difference scheme for the integration of (6) is constructed 
from the one-dimensional GRP conservation law scheme (Ben-Artzi & Falcovitz 1984, 
1986; Falcovitz & Ben-Artzi 1995) via the well-known operator-splitting procedure 
proposed by Strang (1968). The splitting consists in replacing the system (6u) by the 
following pair of one-dimensional conservation laws : 

a a a a  
at ax at  ay 
- U+-F(U)  = 0, - U + - G ( U )  = 0, 

where system (7) is taken to mean that an integration by an infinitesimal time step 
dt of (6a) is obtained if an integration of U by dt according to (7a) is followed by a dt 
integration of U in (7 b). Assume that a one-dimensional second-order-accurate finite- 
difference scheme is available and denote its integration operator for time step At by 
L,(At), &(At) corresponding to (7a) and (7b), respectively. It was shown by Strang 
(1968) that the operator L(At) given by 

(8) 
is a second-order finite-difference approximation to (6 a). 

Observe that in a sequence of numerous finite-difference integration steps 
L(At) L(At) . . . L(At), the half-step pairs of L,(At/2) operators can be combined into a 
single &(At) operator to within second-order accuracy. This observation leads to 
the simplified splitting 

instead of the more accurate and less efficient splitting given in (8). Computations of 
shock wave diffractions in the present study, as well as in other studies of shock wave 
phenomena, yield virtually indistinguishable results when using (8) or (9). We thus 
generally opt for the more efficient splitting, i.e. (9). 

L(At) = L,(At/2) &(At) L,(At/2) 

L(At) = L,(At) &(At) (9) 
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We now turn to the one-dimensional GRP scheme for (7a), which is formulated 
as follows. Let the computational domain be divided into a grid of equally spaced 
points xi+liz = (i+ 1/2)Ax,  where Ax is the grid spacing and the ith cell is the interval 
xt- l /2  < x -= x,+,/,. The conservative second-order difference scheme for the time 
integration of the conservation laws, (7a), is 

where U: denotes the average value of U in cell i at time t = t ,  = nAt, and where the 
time-centred fluxes F( U):;:’,” are obtained by starting from linear distributions of flow 
variables in cells as proposed by van Leer (1979), and by employing the following 
analytic procedure. Denote by Ur(x) the linear distribution of flow variables in cell i 
at time t = n At, whose average value is Up = U:(xi). Consider the initial value 
problem which constitutes an extension to the Riemann problem, and is named a 
Generalized Riemann Problem (GRP), 

a a  
-u+-F(U) = 0, 
at ax 

The key assumption of the GRP analysis is that as t - t ,  -+ O+ the solution U(x, t )  to 
(1 1) approaches smoothly the solution of the ‘associated’ Riemann problem defined in 
the following manner. Replace the linear distributions in (11b) by the constant 
distributions U ~ ( X , + ~ ~ ~ ) ,  Ur+l(xi+l/z), and consider the ensuing Riemann problem. 
Denote its self-similar solution by URp[(x-xi+l12)/( t -  t , )] .  Then the solution to (1 1) is 
assumed to have the property 

Using this limit as the value of U:+llz, the flux at the mid-step is given by 

F( U)::;l,” = F( U):+,,,, + ( 1 3 4  

where F’( U )  denotes the Jacobian matrix of F( U )  with respect to U. The evaluation of 
the time derivative in (13b) is the analytic core of the GRP method. The reader is 
referred to Ben-Artzi & Falcovitz (1984, 1986) and to Falcovitz & Ben-Artzi (1995) for 
a detailed presentation. 

Two options are available for the analytic evaluation of F(U)&+;l,”. The exact 
GRP method, denoted Em, is based on an exact expression for the time derivative 
[ @ / a t )  u];+l/z in (1 3 b) .  The approximate El scheme is based on the observation that an 
error of O(At) in [ @ / a t )  v]:+l/2 implies an error of O(At2) in the time-centred flux of 
(1 3 b), i.e. the order of accuracy of the El scheme is the same as that of the E ,  scheme. 
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The El scheme is obtained when (1 1 a) is replaced by a linearized conservation law (i.e. 
the so-called acoustic approximation). 

Following the integration of the conservation laws, the one-dimensional scheme 
requires an updating of slopes of flow variables in cells, subjected to monotonicity 
constraints designed to avoid erroneous interpolations through hydrodynamic jumps 
(such as shocks or contact discontinuities). The van Leer (1979) monotonicity scheme 
was imposed on slopes of primitive variables (u, u, p, p in the two-dimensional case). 

Turning now to the two-dimensional flow described by (64 ,  the only modifications 
to the truly one-dimensional GRP scheme are the inclusion of the transverse velocity 
components in the kinetic energy expression, and the addition of a transverse 
momentum. The GRP analysis and scheme for one-dimensional flows are described in 
detail in the previously cited references. Therefore, we shall concentrate in the following 
solely on the presentation of those aspects of the scheme that are specific to two- 
dimensional flows. 

It is sufficient to consider the L, operator, since the L, operator can be derived by 
analogy. Turning to the conservation of the y-component of momentum, the flux term 
(puv) in the L, operator is treated by the GRP scheme as pure advection since the 
accelerating y-component of the pressure gradient is absent from L,. Physically 
speaking, this corresponds to the assumption that in the x-direction fluid particles 
advected through cell interfaces retain their transverse velocity component v 
throughout the time step At, regardless of any wave structure resolving the 
discontinuity at each cell interface at time t -  tn = O+. However, since the average 
gradient av/aC per cell is included in the GRP scheme (6 is the local Lagrange 
coordinate defined as d$ = pdx), the flux puv at the cell interface is not constant 
throughout the time step. To evaluate the flux and its first time derivative at cell 
interfaces we adopt the following notation. Let Q denote any flow variable, and let 
Q(x,  t )  denote the solution to the GRP at the cell interface x = x ~ + ~ , ~ .  Then we denote 
by Q, and Q, the values of Q(x, t )  and aQ(x, t ) / a t  at x = xi+l,2 and at t - tn = 0+, 
respectively. Using this notation, the time derivative zj, of the advected transverse 
velocity component v, is given by 

v, = -P,U,($). 

where we reiterate the previously mentioned interpretation of (14) as meaning that v in 
the fluid advected through the cell interface depends solely on the local Lagrange 
variable 6 (i.e. v is constant in time for fixed 5 which corresponds to a fixed fluid 
particle). 

The analytical evaluation of cell interface variables and their first time derivatives is 
the main outcome of the GRP analysis; for details see Ben-Artzi & Falcovitz (1984). 
Here we assume that these values have already been evaluated for all primitive 
variables, i.e. for u, v, p ,  p, and we proceed to specify the resulting expressions for flux 
components and their time derivatives. The flux components are given by 

1. 
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By taking the time derivative of the flux components given in (15), the following 
expression is obtained : 

P x  c, + P x  ux 

2Px u, u x  + P x  4 + P x  I 

where the time derivative of v, is given by (14) and all other variables along with their 
time derivatives are evaluated from the analytic expressions resulting from the GRP 
analysis. 

In executing the numerical solution the flow field shown in figure 1 was divided into 
a grid of 990 x 495 equal-size (square) cells. Such a division ensured high resolution in 
the numerical reconstruction of the investigated flow field. The El scheme was applied 
to all cellkell interfaces where the pressure jump in both right- and left-hand waves 
resolving the associate Riemann problem was lower than 1 YO of the pressure ahead of 
the wave. The CPU time saving thus achieved was 30%. 

4. Results and discussion 
The experimental part of the present work was conducted in the shock tube of the 

Ernst Mach Institute in Freiburg, Germany. This shock tube has an inner diameter of 
20 cm. The driver section is 180 cm long, the driven section is 888 cm long and the test 
section is located about 721 cm downstream of the diaphragm. A schematic description 
of this shock tube is shown in figure 2. Cellulose acetate sheets were used as diaphragms 
for separating the two sections. This was proven to be an excellent diaphragm material 
since it is brittle when stretched and has a high breaking velocity. The shock tube has 
a test section equipped with planar, parallel windows of high optical quality glass. The 
optical field of view is 200 mm x 110 mm and its depth is 40 mm. It is designed for 
using ‘two-dimensional’ models. Three sets of experiments were conducted. In the first, 
the interaction of an incident shock wave, whose Mach number was 1.30, with a square 
cavity (shown in figure 1) was studied using high-speed shadowgraph photography. In 
the second, the incident shock wave Mach number was increased to 2.085. In each of 
these two sets of experiments shadowgraphs were taken at preset time intervals (20 ps 
for the first and 12.5 ps for the second) covering the entire experimental flow duration. 
Unlike Gvozdeva et al. (1988) and Bazhenova et al. (1990) results, the present 
shadowgraphs provide details of the passage of the incident shock wave over the cavity 
and the wave pattern which resulted from this interaction. The shadowgraphs were 
obtained using a 24 frame Cranz-Schardin Spark Camera. Twenty-four point spark 
sources are focused onto the 24 objectives of the camera by use of a concave mirror. 
At the instant of ignition a spark is projected onto the film through the object lenses 
into which the image of the spark was copied. The advantage of this photographic 
technique is that there are no movable parts in the light ray path. Therefore, the optical 
resolution is determined only by the aperture of the objectives. In the third set of 
experiments pressure measurements were made (using Kistler 606 pressure transducers) 



112 

(b) 

0. Igra, J.  Falcovitz, H. Reichenbach and W. Heilig 

- 

ion J-, Driven section A A / Driver sect 
/ / / , r , , , , , , / , / ,  

1- 10680 _I 
FIGURE 2. Illustration of the shock tube used for the experimental investigations. Dimensions 

in mm. 

FIGURE 3. Wave pattern during the interaction of a planar shock wave with a square cavity. t = 0 ps. 
(a) Shadowgraph, (b) numerical simulation (990 x 495 equal-size grid). Initial conditions are : 
Ms = 1.30, Po = 0.97 bar and = 23.3 "C. 
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FIGURE 4. As in figure 3 but at t = 40 ps. 

at the centre of the three surfaces composing the square cavity, see figure 1. The 
pressure measurements were made for incident shock wave Mach numbers within the 
range 1.15 < M ,  < 2.17. 

As mentioned above, for the case where M, = 1.30 shadowgraphs were taken every 
20 ps resulting in 22 photographs covering the entire interaction time. In order not to 
overwhelm the presentation, only some of the photographs are shown below. All 
shadowgraphs are labelled (a) while the corresponding numerical simulations are 
marked (b). The incident shock wave, M ,  = 1.30, propagates into a quiescent air at 
T, = 23.3 “C and Po = 0.97 bar. The sequence offigures 3 (a)  to 13 (a)  shows the evolution 
of the various waves which resulted from the interaction of the incident shock wave S, 
with the square cavity. In the shadowgraph shown in figure 3(a) the incident shock 
wave S, is shown a short time before it reaches the cavity’s leading edge. In the 
shadowgraph shown in figure 4(a) ,  taken 40 ps later, the first stage of the interaction 
process is shown ; S, starts diffracting around the cavity’s upper-left corner, shedding 
a vortex behind it. The numerical simulation, shown in figure 4(b) ,  reconstructs the 
shadowgraph of figure 4(a)  precisely. The lines appearing in figure 4(b) ,  as well as in 
part (b)  of all the following figures, are lines of constant density. The distance traversed 
by the incident shock wave S,, relative to its position 40 ps earlier and the magnitude 
of its descent down the cavity are the same in figures 4(a)  and 4(b) .  With increasing 
time S, propagates toward the cavity’s exit and toward its bottom, while the vortex 
grows in size and remains close to the cavity’s upper-left corner, e.g. see figure 5(a)  
which was taken 60 ps after the shadowgraph shown in figure 4(a) .  Again, perfect 
agreement regarding the shock wave and the vortex geometry and location exist 
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FIGURE 5. As in figure 3 but at t = 100 ps. 

between the experimental (figure 5 a) and the numerical (figure 5 b) results. This process 
continues until S, hits the cavity upper-right corner, as shown in figure 6(a) ,  which was 
taken 40 ps after figure 5(a). Now S, splits into a transmitted (S,) and a reflected (Sr,) 
shock waves. Since the cavity has equal-length walls, it is obvious from figure 6(a) that 
the part of the incident shock wave S, which propagates along the shock tube axis is 
faster than the part which descends toward the cavity’s bottom. During the process 
shown in the shadowgraphs of figures 4(a) to 6(b) ,  the vortex grows in size and its 
centre slowly moves away from the cavity’s upper-left corner. 

It should be noted that although every real fluid is viscid, and our theoretical model 
assumes an inviscid fluid, the numerical simulations exhibit a corner-shed vortex akin 
to the one observed in the experiment. The ‘inviscid’ mechanism by which this vortex 
is generated is the strongly rotational flow generated by the curved shock wave 
resulting from the expansive diffraction of the incident shock wave over the upper-left 
corner of the cavity. Apparently, at  early times this mechanism is the dominant one and 
lack of viscosity does not significantly alter the vortex formation. Note however, that 
this argument is valid with respect to an analytic solution to the Euler equations 
describing the corner shock diffraction. In the numerical solution, truncation errors 
invariably give rise to a ‘numerical viscosity’, so that strictly speaking, the numerical 
solution is never perfectly inviscid. Just the same, no wall friction is present, so that 
with respect to the vortex shedding process, vorticity is generated by the ‘inviscid 
mechanism’ previously described, and the wall boundary layer is absent. When 
inspecting the vortices in figures 7(a) and 7 ( b )  the lack of the slipstream connecting the 
vortex to the corner is apparent in the numerical simulations. This may be attributed 
to numerical advection errors which invariably smear out sharp density variations. The 
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FIGURE 6. As in figure 3 but at t = 140 ps. 

existence of a slipstream in the simulation is better detected by referring to the velocity 
plots (figure 15 c, d ) .  Clearly, the horizontal velocity component is continuous around 
the corner, while the vertical component along the cavity left-hand wall seems to 
approach zero near the corner. Please note that in figure 15(c, d) ,  the velocity vectors 
are reduced by a ratio of 1 : 15, i.e. every plotted velocity vector represents the value at 
the mid-cell in a cluster of 15 x 15 cells. If we were to examine the detailed velocity map, 
the magnitude of the vertical component in the cell just below the corner would be 
much smaller than indicated on the plot. To summarize this discussion, the slipstream, 
although poorly represented by the isopycnic plot, is better shown in the velocity plot. 

In the shadowgraph shown in figure 7(a) ,  taken 20 ps after that shown in figure 6(a), 
the descending part of S, has reached the cavity’s bottom and is reflected upward as 
Sr,. Si is the part of S, which is still moving toward the cavity’s lower-right corner. The 
reflected shock wave Sr, and a second reflected wave Sr, are also visible in figure 7(a) .  
All these waves are clearly reproduced in the numerical results shown in figure 7(b).  
Again, perfect agreement exists between the two findings. As time progresses (figure 
8 a), S; approaches the cavity’s lower-right corner and therefore its size decreases while 
Sr, and Sr, become larger and weaker (on a shadowgraph, the stronger the shock wave is, 
the darker it appears in the photograph). Sr, also increases in size and becomes much 
weaker; it is hardly noticeable in figure 8(a). In the numerical results weak waves are 
shown by thin lines while strong waves appear as thick lines. It is clear from figure 7(b)  
that the upper part of Sr, is weaker than its lower part. The weak wave Sr, in figure 8 (a)  
is too weak to be noticed in figure 8(b). However, all other waves shown in figure 
8(a) are correctly reproduced in the numerical results shown in figure 8(b). A unique 
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FIGURE 7. As in figure 3 but at t = 160 p. 

situation exists in the shadowgraph of figure 9(a) ;  it was taken at the exact moment 
when Sl, hits the cavity’s lower-right corner, displaying a meeting between Sr, and Sr, 
at this corner. This happens 200 ps after the situation shown in figure 3(a). The 
numerical results shown in figure 9 (b)  reconstruct this unique wave pattern accurately. 
In the present case Sr, grows in size and its first part, that starting from S, immediately 
behind the end of the Mach stem, gets still weaker. Sr, is reduced to a Mach wave and 
is therefore unrecognizable on figure 9 (a). The vortex continues its movement away 
from the cavity upper-left corner. In figure 9(b)  the upper part of Sr, is too weak to 
be noticed. As mentioned above, all numerical reconstructions show lines of constant 
density. In the present solution the density change between neighbouring lines of 
constant density is set at Ap/po = 0.054. The choice of Ap/po controls the density 
resolution of the numerically constructed flow field. Inspecting the sequence of figures 
8,9, 10 we note that at the lower-right corner of the cavity the remainder of the incident 
shock wave S; has vanished (figure 9) upon reaching the corner, and has re-emerged 
as the reflected shock wave Si, (figure 10). Note the good agreement of the 
computational simulations in this sequence with the corresponding experimental 
shadowgraphs. 

So far the wave pattern has been controlled mainly by the interaction of S, with the 
three walls of the square cavity. At the time of figure 10, three shock waves are present 
within the cavity and their continued interactions with each other, with the cavity walls 
and with the vortex, are exhibited in the following shadowgraphs. Such multiple 
interactions lead to many reflections and distortions of the participating waves. The 
beginning of the complex collision/reflection process which takes place inside the 
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FIGURE 8. As in figure 3 but at t = 180 ps. 

cavity is shown in figure 11 (a) which was taken 40 ps after figure lO(a). The wave 
geometry is almost identical in both figures ll(a) and ll(b) indicating both the 
accuracy of the present numerical solution and the validity of the physical model 
proposed for the interaction considered, ( l t (4) .  With passing time the flow and wave 
configuration inside the cavity become more and more complex as can be seen from the 
shadowgraph shown in figure 12(a), which was taken 60 ps after that of figure 11 (a). 
All the relatively strong waves which appear in figure 12(a) are also shown correctly 
in figure 12(b). Note that the curvature and the geometrical location of these waves are 
very well reproduced in the numerical simulation. The waves and the vortex centre 
position, relative to the cavity’s walls/corners, are reproduced with high accuracy. In 
the shadowgraph shown in figure 13 (a), taken 80 ,us after that in figure 12(a), a large 
web of waves of various strengths is shown. The wave pattern is a result of multiple 
interactions among the waves and between the waves and the cavity’s walls, and also 
between waves and the vortex. The geometry and position of the strong waves and the 
vortex centre are well reproduced in the numerical solution shown in figure 13(b). 
Reducing the value of Ap/po from the chosen value of Ap/po = 0.0540 and/or 
increasing the number of grid points would have helped in revealing the weaker waves 
discernible in figure 13(a) but not observed in figure 13(b). 

The effect of an increase in the number of grid points used for the numerical solution 
becomes apparent when the results shown in figure 7 (b) (the wave configuration 160 ps 
after the situation shown in figure 3 b) are re-calculated using a smaller number of grid 
points. The results shown in figure 14 were obtained for a mesh of 660 x 330, instead 
of the 990 x 495 used for obtaining figures 3 (b)-13 (b). It is clearly seen that figure 7 (b) 
reproduces figure 7(a) more accurately than figure 14, where the reflected wave Sr, 
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FIGURE 9. As in figure 3 but at t = 200 ps. 

appears as a weak shock wave (two lines) while it appears as a well defined reflected 
wave in figure 7 (b). Sr, appears as a weak wave in figure 7 (b),  but does not appear in 
figure 14. Also, while in figure 7(b) Sr, has the exact geometry shown in the 
shadowgraph of figure 7 ( a )  it is not reproduced accurately in figure 14. Owing to 
memory limitations of the computer used (IBM RS 6000/560) a solution with a finer 
grid was not attempted. Obtaining the present results (990 x 495 grid) required 40 
hours for the given incident shock wave Mach number. 

In the present case ( M ,  = 1.30) the flow behind the incident shock wave is subsonic, 
which is why a vortex is generated at the cavity’s upper-left corner, where the post- 
shock flow experiences expansion. This vortex remains attached to the corner through 
a slipstream, see figures 4(a) to 1 1  (a). The slipstream is eventually destroyed by the 
colliding shock waves inside the cavity, see figures 12(a) and 13(a). The numerical 
solution provides information on all the flow variables : for example the flow velocity 
map, at a few different times, as shown in figure 15(a-d). In figure 15(a) the flow 
velocity is shown for t = 0, the situation shown in figure 3. As could be expected, the 
flow behind the incident shock wave is uniform and parallel to the shock tube walls. 
Upstream of the incident shock wave the entire field is quiescent, i.e. u = 0. The 
velocity field corresponding to figure 5 is shown in figure 15(b); the existence of a 
vortex close to the cavity’s upper-left corner is represented by rapid changes in the 
direction and magnitude of velocity vectors at that region. Ahead of the incident shock 
wave the gas is at rest. The velocity field corresponding to figure 8 is shown in figure 
15(c). The flow expansion around the vortex and behind the various waves is clearly 
shown. As could be expected, there is zero velocity behind the stopping shock Sr,. The 
velocity field at the time that the shadowgraph of figure 12(a) was taken is shown in 
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FIGURE 10. As in figure 3 but at t = 240 ps. 

figure 15(d). It is clear from this figure that in spite of the shock collision with the 
vortex, the later is still well defined and remains quite close to the cavity's upper-left 
corner. Velocities close to most of the cavity's walls at the time considered are very 
small, as should be expected behind wall-reflected shock waves. 

A different wave pattern and flow behaviour are observed when the incident shock 
wave Mach number is raised to a level that results in a supersonic flow behind it. Such 
a case is obtained for example when M, = 2.032. The results shown in figures 16 to 
22 were obtained experimentally (shadowgraphs are marked a )  and numerically (b) for 
a case when the above mentioned incident shock wave propagates into a quiescent air 
at T, = 22.6 "C and Po = 0.9 bar. In the experimental work the incident shock wave 
Mach number was deduced by measuring the time that elapsed between the shock's 
arrival at two pressure transducers, each placed at a different point on the shock tube 
wall. From the known distance between these pressure transducers and the measured 
time of arrival, the incident shock wave velocity is readily deduced. The shock wave 
Mach number is based on this velocity and the measured pre-shock gas temperature. 
For the set of results shown in figures 16(a) to 22(a), the measured incident shock wave 
Mach number was 2.085. The very good agreement that was obtained between the 
experimental results (shadowgraphs) and the numerical simulations, was achieved 
when M, was taken as M, = 2.032; this is 2.5% lower than the measured value. The 
difference is due to experimental errors and to shock wave attenuation between the 
place of measurement and the shock tube test section where the shadowgraphs were 
taken. Note that the shock wave velocity deduced from the wave position in the 
shadowgraphs agrees perfectly with M ,  = 2.032. 
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FIGURE 11. As in figure 3 but at t = 280 ks. 

As before, in the numerical solution the flow field was divided into a grid of 
990x495. Since now the incident shock wave is much stronger than that in the 
previous case, the density jump between neighbouring lines of constant density (shown 
in figures 17 b to 22b) is increased to Ap/po = 0.1 179. 

In figure 16(a) the incident shock wave is shown shortly before it hits the cavity’s 
leading edge; as could be expected, figure 16(b) replicates the shadowgraph shown 
in figure 16(a). The shadowgraph shown in figure 17(a) was taken 37.5 p after that of 
figure 16(a). The diffraction of the incident shock wave over the cavity’s upper left 
corner is shown clearly in figures 17 (a)  and 17 (b). Unlike the previously described case, 
now the post-shock flow velocity is almost sonic. Since the post-shock flow is sonic, 
instead of a vortex near the cavity’s upper-left corner (which characterized the flow 
expansion in the previously described case), we now have an expansion wave centred 
at the corner. This expansion wave is shown very ciearly in figure 17(b), but is hardly 
noticed in figure 17(a) because shadowgraphs are sensitive to changes in density 
gradients. Large changes in density gradients are present at shock fronts, therefore S, 
and S, are clearly visible in figure 17(a). Such gradient changes are understandably 
small in regions of the expansion wave that are not very close to the corner, and 
therefore are not observed on the shadowgraph. However, the entire centred expansion 
wave is clearly visible in the numerical simulation (figure 17b). As could be expected, 
since the flow behind the incident shock (S,) is almost sonic, the initial slope (near the 
wall) of the expansion wave head is vertical to the flow direction (see figure 17b). The 
density changes which occur in the expansion are clearly visible in the numerical 
simulation where the centred fan pattern (akin to a self-similar Prandtl-Meyer flow) is 
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FIGURE 12. As in figure 3 but at t = 340 ps. 

readily noticed. In order to match between the high-pressure zone which exists behind 
S, and ‘the low pressure behind the expansion wave centred at the cavity’s upper left 
corner, a secondary, upstream-facing, shock wave (S,) is generated. This shock wave, 
is clearly visible in the shadowgraph (figure 17a) and in the numerical simulation 
(figure 17b). It should be noted that both the shock wave position and its geometry are 
reproduced accurately in the numerical solution shown in figure 17(b). 

The shadowgraph shown in figure IS(a), taken 37.5 ys after that of figure 17(a), 
clearly shows that the unperturbed part of S, propagates faster than the part 
descending into the cavity. This was also observed in the previously discussed case of 
the weaker incident shock ( M ,  = 1.30). The numerical simulation shown in figure 18 (b) 
matches the shadowgraph perfectly. In both, the ‘ S ’-shaped upstream-facing shock 
wave S, has the same shape, size and position. The same is true for S,. The slipline C, 
separating the flow fields generated behind shock waves S, and S, is clearly seen both 
in the shadowgraph and in the numerical simulation. The fact that C, is a slipline can 
be confirmed by inspecting figure 18(c) which shows lines of constant pressure 
(isobars). As could be expected, shock waves S, and S, are clearly visible in figure 18 (c), 
while C, is absent, since equal pressures exist on both sides of a slipline. 25 ps later, 
the reflection of the incident shock wave S, from the cavity’s right-hand wall and its 
interaction with the cavity’s upper-right corner is clearly visible; see figure 19(a). It is 
apparent from this shadowgraph that the part of S, which descends into the cavity 
is weaker than the part which propagates along the shock tube axis (it appears brighter 
than the part of S, which propagates along the tube’s axis). This fact can also be 
deduced from its slower movement; it had not reached the cavity’s bottom while the 
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FIGURE 13. As in figure 3 but at t = 420 ps, 

FIGURE 14. Numerical simulation, using a 660 x 330 equal-size grid, of the wave pattern during 
interaction of a planar shock wave with a square cavity; t = 160 ps. 

part moving along the tube’s axis has traversed a longer distance. Sr, and S, appear as 
strong shock waves while C,, a slipline starting from the triple-point, is barely 
noticeable. All these waves are accurately reproduced numerically in figure 19(b). The 
shadowgraph shown in figure 20(a) describes the situation 25 ps later. Now two 
reflected shock waves are clearly shown; Sr, which was reflected from the cavity’s right 
wall and Sr, which was reflected from the cavity’s floor. S ;  is the part of S ,  which has 
not yet reached the cavity’s walls; it propagates toward the cavity’s lower-right corner. 
S ,  is also clearly visible in figure 20(a); through this shock wave, the pressure matching 
between the low-pressure zone arising from the corner expansion wave and the high- 
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FIGURE 15. Numerical simulation (990 x 495 equal size grid) showing the velocity field for the 
initial conditions of figure 3. (a) t = 0 ps, (b) t = 100 ps, (c) t = 180 ps, ( d )  t = 340 ps. 
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FIGURE 16. Wave pattern during the interaction of a planar shock wave with a square cavity. t = 0 ps. 
(a) Shadowgraph, (b)  numerical simulation (990 x 495 equal-size grid). Initial conditions are: 
M ,  = 2.032, P, = 0.90 bar and = 22.6 "C. 

pressure zone that exists behind Sr, takes place. Therefore, S, extends throughout the 
low-pressure zone downstream of the corner. Weaker flow discontinuities are also 
visible in this shadowgraph (figure 20a), for example, slipline C, and slipline C, which 
starts from the triple point. Figure 20(c), in which isobars are presented, confirms that 
C, and C, are sliplines. All these shock waves and other flow discontinuities are 
reproduced very accurately, in shape and location, in the numerical reconstruction 
shown in figure 20(b). The wave pattern which exists 25 ps later is shown in the 
shadowgraph of figure 21(a) and the appropriate numerical simulation is shown in 
figure 21 (b). The incident shock wave S, has almost left the optical field of view; S ,  
approaches Sr, and still extends throughout the low-pressure zone across the corner 
expansion wave, as could be expected. The reflected shock waves, Sr, and Sr,, intersect 
each other resulting in a complex Mach reflection near the cavity's lower-right corner. 
Additional, weaker, flow discontinuities are detectable in the shadowgraph, and in the 
numerical simulation, such as sliplines C ,  and C,. As before, excellent agreement on the 
waves geometry and location exists between experimental and numerical results. It 
should be noted that since the flow behind the incident shock wave, S,, is almost sonic 
(for M ,  = 2.032 the post-shock flow Mach number is 0.98), the first characteristic of 
the expansion wave moves slightly upstream of the cavity's upper-left corner; see figure 
21 (b). With increasing time this minute advance, upstream of the expansion corner, 
continues. The initial slope of this characteristic, as could be expected, is vertical 
relative to the flow direction. With increasing time, S, will collide with Sr, and with 
other waves present inside the cavity; in addition to these mutual interactions, these 
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FIGURE 17. As in figure 16 but at t = 37.5 ps. 

waves will collide with the cavity’s walls resulting in a very complex flow. Some idea 
of this complex flow is given in figure 22 which shows the wave pattern 100 ps after that 
shown in figure 21. Again, as could be expected, excellent agreement exists between 
experimental (figure 22a) and numerical (figure 22b) results. At this late time many 
shock waves and contact discontinuities are present inside the cavity; they are the 
result of the multiple interactions mentioned earlier. At an earlier time (figures 17 to 
21) a clear corner expansion wave is observed in all numerical simulations. At a late 
time the complex wave pattern prevailing inside the cavity (figure 22 b)  interferes with 
the centred expansion wave and as a result the expansion wave is divided into a few 
segments, each terminated by a shock wave. Owing to the high density gradients 
present in the case considered ( M ,  = 2.032), most of the shock waves and other 
discontinuities appear much clearer in the numerical simulations than in the 
shadowgraphs. This was not the case for the weaker shock wave ( M ,  = 1.30) discussed 
earlier. 

In figure 23 a comparison between experimentally obtained and numerically 
evaluated pressure-history peaks is given. Three pressure pickups (figure 1) were 
programmed to record the peak in the pressure time-history. The experimental findings 
were obtained using Kistler 606 piezoelectric pressure transducers, they are presented 
in figure 23 as discrete points; the numerical results are shown as solid lines. All 
pressures were normalized by the pre-shock pressure, Po. As could be expected, for a 
given shock wave pressure ratio (P,/P,) the highest pressures are encountered on the 
cavity wall facing the incident shock wave (where pressure gauge no. 3, shown in figure 1, 
is located). The lowest pressures are experienced by the wall along which the incident 
shock wave diffraction takes place (where pressure gauge no. 1 is located). This is in 
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FIGURE 18. As in figure 16 but at t = 75 ps, and (b) numerical simulation - isopicnics, 
(c) numerical simulation - isobars. 

line with the fact mentioned previously, while discussing the shadowgraphs in which 
the incident shock wave diffraction is shown, that the diffracting part of the incident 
shock wave is weaker (slow propagation) than the transmitted part. Increasing the 
strength of the incident shock wave (i.e. increasing &/Po) results in an increase in 
pressures acting on all the cavity walls. It is evident from figure 23 that a very good 
agreement exists between the experimental and numerically calculated pressures. A 
further confirmation of the validity and accuracy of the proposed physical model 
(equations ( l t ( 5 ) )  and its numerical solution (the GRP scheme) is provided by this 
agreement. 

In Gvozdeva et al. (1988) and Bazhenova et al. (1990) the prevailing wave pattern 
was recorded at some ‘frozen’ times. There is no information in those papers about the 
time evolution of the flow considered. As is obvious from figures 3 to 22, time plays 
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FIGURE 19. As in figure 18 but at t = 100 p. 

a major role in this interaction process. Furthermore, their predictions regarding peak 
pressures inside the cavity are far from reality. 

5. Summary and conclusions 
The flow resulting from the interaction between a planar shock wave and a square 

cavity was studied in detail, both experimentally and numerically. It was shown that 
the complex time-dependent flow could be computed accurately using the second-order 
GRP scheme. An excellent agreement regarding the prevailing shock fronts location 
and geometry was found between experimental (shadowgraphs) and numerical results. 
It was shown that the flow which started as a self-similar one turned quickly into a 
genuinely time-dependent flow in which no self-similarity existed. As could be 
expected, the highest peak pressures are experienced by the cavity wall on which a 
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FIGURE 20. Wave pattern during the interaction of a planar shock wave with a square cavity. 
As in figure 18 but at t, = 125 ps. 

head-on1 collision with the incident shock wave takes place. The lowest peak pressures 
are found on the cavity wall along which the incident shock wave diffraction takes 
place. The flow developed inside and around the cavity depended on the strength of the 
incident shock wave. In air, for M ,  < 2 the post shock flow is subsonic and the flow 
expansion into the cavity is via a vortex. For M ,  > 2 the post-shock flow is supersonic 
and the flow expansion into the cavity is through a centred expansion wave. The 
interactions between the various waves reflected from the cavity walls, and between 
them and the vortex or the centred expansion wave, produced a complex unsteady flow 
in which no self-similar structure could be observed. In spite of the complexity of such 
flows, they are governed by a fairly simple physical model, equations (1)-(5) (Euler 
equations), and can be solved numerically (using the GRP scheme) yielding very 
accurate results. It is concluded that the present physical model and its numerical 
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FIGURE 21. Wave pattern during the interaction of a planar shock wave with a square cavity. 
As in figure 16 but at  t = 150 ps. 

FIGURE 22. As in figure 16 but at  t = 250 ps. 
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FIGURE 23. First pressure peaks on each of the cavity walls: 0,  gauge, no. 1; m, gauge no. 2; 

0, gauge no. 3; -, numerical results. 

solution can be used reliably for treating other two-dimensional compressible flows 
where real gas effects are negligible. 
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